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1 Introduction
Ideally, a probabilistic programming language should admit a com-
putable semantics, but languages often provide operators that de-
note uncomputable functions. While the use of these uncomputable
operators may result in uncomputable programs, a programmer
can productively use these operators and still produce a computable
program.

For instance, consider the TrueSkill model of Fig. 1, in which
three players with compete against each other in a round robin, with
their performance randomly varying around their baseline skill. The
TrueSkill program returns a random Boolean value (of type R(B),
whereB is the space of boolean values, true and false) that indicates
what observations were made: Alice beat Bob in game 1, Bob beat
Cyd in game 2, and Alice beat Cyd in game 3. Used in this program
are a normal distribution functionN : R× {x : R | x > 0} → R(R)
that takes mean and standard deviation parameters as arguments,
as well as a Boolean-valued comparison function (>) : R ×R→ B.
TrueSkill is computable, meaning that the probability the return
value is true can be computed to any finite precision within finite
time. But its component computations are not computable: the
comparison function (>) is not even continuous1 2! TrueSkill’s
computability, therefore, cannot be verified compositionally.

To better understand why (>) is innocuous in TrueSkill, consider
the simpler examples in Fig. 2. There, posN is computable (it’s
essentially the normal CDF), whereas posδ is uncomputable (which
follows from uncomputability of comparison of a real number with
0). In this paper, we use locale theory to define a probabilistic
programming semantics that admits computable programs (such
as TrueSkill), rejects uncomputable programs (such as posδ ), and
for which computability is compositional.

The key idea is that though comparison with 0, (· > 0) : R→ B,
is not continuous, it is continuous when restricted to the domain
{x : R | x , 0}. Because the output of a normal distribution as
used in posN lies in this domain with probability 1, we can type
the operations as N : R × {x : R | x > 0} → R({x : R | x , 0})
and (· > 0) : {x : R | x , 0} → B, such that both functions are
continuous.

The subspace {x : R | x , 0} is just one of many subspaces of
R that has probability 1 under a normal distribution. In particular,
for any z : R, there is the subspace {x : R | x , z} excluding that
point. It is equally valid to declare that N should output to any of
its probability-1 subspaces, or better yet, it should output a value
that is in all of these subspaces at once, i.e., their intersection. This
intersection must be empty in point-based theories such as measure
theory and classical topology, but not in locale theory, where the
intersection has exactly the desired structure (though it still has

1 All computable functions are continuous.
2 Since R × R is connected and B is discrete, there are no nontrivial continuous maps
from R × R to B.
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alice_baseline← N(0, 20);
bob_baseline← N(0, 20);
cyd_baseline← N(0, 20);
alice1 ← N(alice_baseline, 1);
bob1 ← N(bob_baseline, 1);
bob2 ← N(bob_baseline, 1);
cyd2 ← N(cyd_baseline, 1);
alice3 ← N(alice_baseline, 1);
cyd3 ← N(cyd_baseline, 1);
return(alice1 > bob1 && bob2 > cyd2 && alice3 > cyd3)

Figure 1. A probabilistic program of type R(B) representing a
TrueSkill model.

posN(x) ≜ y ← N(x , 1);
return(y > 0)

posδ (x) ≜ y ← δ (x);
return(y > 0)

Figure 2. Two probabilistic programs of type R→ R(B). posN is
computable but not posδ . δ represents the Dirac delta.

no global points). Such a locale without an analogue in classical
topology is called non-spatial.

Nontermination. This technique can similarly be used to han-
dle functions that terminate almost surely but not always without
resorting to explicit partiality (which would come at the cost of
significant complication to the mathematical interpretation of pro-
grams as probability distributions, as well as to the computability
of their properties). For instance, a developer may want to define
the geometric distribution with probability 1/2, geometric : R(N)
and have access to the coinflips : R(Stream(B)) distribution, which
provides an infinite stream of random independent Boolean values.
Intuitively, they can define the geometric distribution by flipping
coins until it lands on heads, and counting the number of coinflips
it took to get the heads. That is, they wish to define a deterministic
function wait_for_heads : Stream(B) → N that computes the first
true value in a sequence of booleans, and apply this to the coinflips
distribution.

Unfortunately, wait_for_heads is partial, as it is undefined on
the input sequence that is always false, even though this sequence
occurs with probability 0 under coinflips. But the same solution
applies: if we consider coinflips to return a value in the intersection
of all its probability-1 subspaces, then wait_for_heads will be total
on that domain.

Contributions. Locale theory enables us to understand these ex-
ample programs as total and continuous (where semantic frame-
works based on classical topology or measure theory would not).
We propose locale theory, and particularly non-spatial sublocales,
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as a semantic framework for probabilistic programming. The ad-
vantages of this framework are:
• Totality: There is no need to use partiality to understand
programs that almost surely terminate.
• Continuity: Programs that are only almost surely continu-
ous in classical topology are now continuous.
• Computability: Constructivity makes the semantics com-
putable in a strong sense: the probability that a program
returning a random B returns true can be evaluated to any
precision in finite time (unlike in measure-theoretic seman-
tics).
• Disintegration: Non-spatial locales afford a notion of dis-
integration that provides stronger uniqueness guarantees
than in measure theory and stronger existence guarantees
than for continuous disintegrations in classical topology.

2 Locale-theoretic probabilistic semantics
A locale A is a lattice O(A) of opens that has finitary meets and
infinitary (arbitrary/small) joins (i.e., a frame). A continuous map
f : A→c B is a map of opens f −1 : O(B) → O(A) that preserves
finitary meets and infinitary joins. This defines a category Loc.
Loc has a terminal object ∗, and a (global) point of a locale A is
a continuous map ∗ →c A. Locales may be specified by giving a
set S of basic opens and an inductive family of covering axioms of
the form a ≤

∨
i :I bi on those basic opens a,bi : S . Such locales

are called inductively generated formal spaces [2], which form a full
subcategory Loci of Loc that is cartesian monoidal even in a pred-
icative setting3. A strong monad R on Loc maps any locale to the
locale of its probability distributions [9, 10], and restricts to a strong
monad on Loci. Thus Loci and R have sufficient structure to give
constructive and predicative categorical semantics for probabilistic
programming languages.

Sublocales of a given inductively generated formal space are
formed by adding additional covering axioms. For instance, for
given an openU : O(A), adding the axiom ⊤ ≤ U forms the open
sublocale corresponding toU , while adding the axiomU ≤ ⊥ forms
the closed sublocale corresponding to the set-theoretic complement
of U 4. The intersection of a family of sublocales is produced by
adding all of the covering axioms from each sublocale in the family.

Random locales. Given a probability distribution µ : ∗ →c R(A)
(where ∗ is the terminal object), one can form the locale Ran(µ) that
is the intersection of its probability-1 open sublocales [7]5, with
the inclusion ιµ : Ran(µ) →c A. Ran(µ) is inductively generated
when A is. There is a distribution µ↾ : ∗ →c R(Ran(µ)) such that
ιµ ∗µ↾ = µ, where ·∗ denotes the pushforward, i.e., mapping ιµ over
µ↾. If the locale A is fitted, i.e., every sublocale is the intersection
of all the open sublocales containing it, then the sublocale Ran(µ)

3 Loc is not closed, so it can only interpret first-order languages. Presumably, to be
able to interpret higher-order functions, it could be embedded in a larger category
that is cartesian closed, such as the gros topos of sheaves over the site generated by
the open cover topology [3, 4].
4 Since for any open V we have ⊥ ≤ V ≤ ⊤, these two axioms imply, respectively,
thatU = ⊤ andU = ⊥.
5 Simpson [7] for the most part uses σ -locales rather than locales, whose lattice of
opens has countable joins rather than arbitrary joins. Contrary to locales, much theory
related to σ -locales requires appealing to classical mathematics. Classically, every
measurable space determines a σ -locale that is usually not a locale, and measurable
functions determine σ -continuous maps of σ -locales. For strongly Lindelöf spaces
such as R and Stream(B), the two notions coincide. We choose to work with locales
rather than σ -locales because they can be formulated constructively and hence have
stronger computational content.

is in fact the smallest measure-1 sublocale. Both R and Stream(B)
are fitted.

A probability distribution µ : ∗ →c R(A) is called random if
whenever µ(U ) = 1, then ⊤ ≤ U (we also call A random w.r.t. µ)
([7] definition 6.4). Clearly, any µ↾ : ∗ →c R(Ran(µ)) is random.
A distribution µ : ∗ →c R(A) is random iff A is homeomorphic to
Ran(µ).

Totality and continuity. Random sublocales give a canonical way
to turn almost-surely terminating functions into total ones and
almost-everywhere continuous functions into continuous ones. In
the following theorems, suppose we have a probability distribution
µ : ∗ →c R(A) on a fitted locale A.

Partiality can be modeled with a monad ·⊥ on Loc [8, Ch. 10].
An open inclusion up : B →c B⊥ embeds the original locale, and
in addition there is a closed point ⊥ : ∗ →c B⊥ that represents
nontermination6.

Theorem 2.1 (Totality). Given a map f : A →c B⊥ such that
f∗µ(up(B)) = 1 (where f∗µ denotes the pushforward of µ by f ), there
is a map д : Ran(µ) →c B such that f ◦ ιµ = up ◦ д, and thus
f∗µ = (up ◦ д)∗µ↾.

Since locale theory is “point-free,” it does not provide a natural
setting for describing (potentially discontinuous) functions on sets.
Accordingly, we define those almost everywhere continuous func-
tions from A to B with respect to µ : ∗ →c R(A) as continuous
maps f : A′ →c B on some sublocale A′ of A satisfying µ(A′) = 1
78.

Theorem 2.2 (Continuity). Given an almost-everywhere continuous
function f from A to B defined on some sublocale A′ of A satisfying
µ(A′) = 1, there is a map д : Ran(µ) →c B such that f ◦ ι = д,
and thus f∗µ |A′ = д∗µ↾, where ι : Ran(µ) →c A′ is the inclusion of
Ran(µ) in A′.

Computability. Given a point x : ∗ →c A of a locale A and an
open cover ⊤ ≤

∨
i :I Ui of A, there (constructively) exists some

i∗ : I such that x lies inUi∗ . This is the fundamental computational
content of the locale-theoretic semantics9. For instance, for every
ε > 0 there is a cover of R by open balls with rational centers and
radius ε , allowing approximation of any real number to within ε .
Since there is a continuous map from R(B) to R indicating the prob-
ability the Boolean is true, it is possible to compute the probability
that a random Boolean value is true (and hence, the probability that
any decidable predicate holds).

Locales A without points, such as Ran(N) (where N is any nor-
mal distribution — their random sublocales are the same), still have

6 A brief description of the partiality construction: if A is an inductively generated
formal space, so is A⊥ . Its basic opens are those of A together with a new basic
open that represents the new top element. All covering axioms of A are added as
corresponding axioms to A⊥ , but the new top open has no covering axioms.
7Simpson [7] defines outer measure for sublocales of fitted locales.
8 Functions on sets (not necessarily continuous) can be represented in locale theory
via the adjunction Discrete ⊣ Pt between Set and Loc. One might be tempted to call
a function f : Pt(A) → Pt(B) almost everywhere continuous if there is a sublocale
ιA′ : A′ →c A such that µ(A′) = 1 and there is some д : A′ →c B such that
f ◦ Pt (ιA′ ) = Pt(д). Any function that is almost everywhere continuous in this sense
corresponds to one that is almost everywhere continuous in the other sense,
9 For σ -locales, the analogous statement fails to hold constructively for σ -locales
of interest. For instance, classically, every measurable space defines a corresponding
σ -locale. In particular, the Borel σ -algebra on R classically gives a σ -locale with the
cover ⊤ ≤ {x : R | x ≤ 0} ∨ {x : R | x > 0} but the ability to determine which
subset holds of an arbitrary real number implies the Limited Principle of Omniscience
(LPO), which is a “constructive taboo.”
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computational content indirectly, as their derived locales R(A) or
P+♢(A), the locale of their nondeterministic values, may have points,
as is the case for Ran(N). For instance, for any probability distri-
bution µ : R(Ran(N)), we can compute the probability that µ is
larger than 0 by mapping a function (· > 0) : Ran(N) →c B over it
to produce a probability distribution on B. One can view randomly
sampling from a locale A as producing a point of the nondetermin-
istic powerlocale P+♢(A), and accordingly, one can for instance run
deterministic computations A→c B on these random samples to
produce random samples from B, even though A has no points.

3 Conditional probability and disintegration
Statistical inference can usually be phrased as the problem of find-
ing disintegrations, making the question of their existence and
uniqueness important. A disintegration of a probability distribu-
tion µ : ∗ →c R(A × B) is a decomposition into the distribution
fst∗µ : ∗ →c R(A) and a conditional distribution f : A →c R(B)
such that µ =

∫
(id × f )d(fst∗µ).

Disintegrations exist (constructively) when A is discrete, but
there are also instances where they do not exist, even classically.
For instance, the distribution on ∗⊥ × ∗⊥ that has half its mass
on the point (up(tt),⊥) and its other half on the point (⊥, up(tt))
cannot be disintegrated.

With random sublocales, it becomes particularly interesting to
consider disintegrations of the above form where fst∗µ is random,
or in particular a random sublocale A′ of a larger locale A. Using
the random sublocale A′ makes both existence and uniqueness of
the conditional distribution f : A′ →c R(B) easier in comparison
toA, both for the same reason: any f : A→c R(B) can be restricted
to the domain A′.

Classically, disintegrations are only unique up to measure 1,
which Shan and Ramsey [6] find problematic:

The definition of disintegration allows latitude that our disin-
tegrator does not take: When we disintegrate ξ = Λ ⊗κ , the
output κ is unique only almost everywhere–κx may return
an arbitrary measure at, for example, any finite set of x ’s.
But our disintegrator never invents an arbitrary measure
at any point. The mathematical definition of disintegration
is therefore a bit too loose to describe what our disintegra-
tor actually does. How to describe our disintegrator by a
tighter class of “well-behaved disintegrations” is a question
for future research. In particular, the notion of continuous
disintegrations (Ackerman, Freer, and Roy 2016) is too tight,
because depending on the input term, our disintegrator does
not always return a continuous disintegration, even if one
exists.

Locale theory’s notion of continuity is an improvement on Ack-
erman, Freer, and Roy [1] in this regard: it is no longer too strict
to require a continuous disintegration on the random sublocale,
which is a much smaller sublocale than is possible classically. As an
example, consider a distribution µ : ∗ →c R(Ran(N) × B) which
is a standard normal distribution on the Ran(N) part and the B
part is true if the Ran(N) component is larger than 0 and false if
it’s smaller than 0 (since there’s no mass at exactly 0, this specifies
the distribution completely). Suppose we want to condition on the
Ran(N) component. The conditional distribution would be consid-
ered discontinuous according to Ackerman, Freer, and Roy [1] (who
would necessarily use R in place of Ran(N)) because both δ (true)
and δ (false) (where δ is the Dirac delta) are in the image of any

neighborhood of 0. However, it would be continuous on Ran(N),
defined by the continuous map

f : Ran(N) →c R(B)

f (x) ≜ δ (x > 0),

where (· > 0) : Ran(N) →c B is continuous due to its smaller
domain.

It is desirable to be able to extend the domain of a conditional
distribution from a random sublocale to some larger sublocale
in a unique manner. For instance, in the previous example, the
conditional distribution can be extended in a unique way from
Ran(N) to {x : R | x , 0}. This follows from several facts:
• Given f : S →c B, where S is a sublocale of A, then continu-
ous extensions of f to A are unique if S is dense in A and B
is Hausdorff.
• If a locale X is regular, meaning that every open U of X is
a union of opens O such that ⊤ ≤ U ∨ ¬O , then R(X ) is
Hausdorff.
• B is regular.
• Ran(N) is dense in {x : R | x , 0}.

4 Related Work
Jones [5] gives semantics of probabilistic programs with valua-
tions on CPOs rather than locales in general. The probability that
a program terminates is a lower real number, which is only lower
semi-computable. Faissole and Spitters [3] propose using valuations
in the context of synthetic topology to give meaning to probabilistic
programs. Similarly, properties are only lower-semicomputable in
this framework. Synthetic topology is only capable of representing
spatial locales, so most random locales of interest cannot be repre-
sented. Their technique of constructing structures in the internal
language of a topos allows their notions to be naturally extended
to a higher-order setting. We imagine that our framework could
similarly be extended to a higher-order setting by using the gros
topos of sheaves over formal spaces with the open cover topology.

Simpson [7] elucidates how a valuation on locales can be re-
stricted to a smallest sublocale of measure 1, but does not consider
continuous maps on them.
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