Probabilistic Program Inference With Abstractions

Steven Holtzen
UCLA
sholtzen@cs.ucla.edu

1 Introduction

Abstraction is a fundamental tool in the analysis and verifica-
tion of programs. Typically, a program abstraction selectively
models particular aspects of the original program while uti-
lizing non-determinism to conservatively account for other
behaviors [2]. However, non-deterministic abstractions do
not directly apply to the analysis of probabilistic programs.
We recently introduced probabilistic program abstractions,
which explicitly quantify the non-determinism found in a
typical over-approximate program abstraction by using a
probabilistic choice [5]. These probabilistic program abstrac-
tions are themselves probabilistic programs.

Here we illustrate probabilistic program abstractions by
example in the context of predicate abstraction [1] and de-
scribe their application to probabilistic program inference.
There is no universal solution to inference: every proba-
bilistic program has subtle properties (for example, sparsity,
continuity, conjugacy, submodularity, and discreteness) that
require different inference strategies (for example, sampling,
message passing, knowledge compilation, or path analysis).
We propose to utilize probabilistic program abstractions to
automatically decompose probabilistic program inference
into several simpler inference problems. This general mech-
anism for breaking a complex query into sub-queries will
allow the use of heterogeneous inference algorithms for dif-
ferent concrete sub-queries, and the abstraction will make
precise how these sub-queries together can be used to pro-
duce the answer to the original inference query.

2 Predicate Abstractions

A predicate abstraction is a well-studied program abstraction
whose abstract domain is a predicate domain [1]. Predicate
abstractions are known as Boolean programs. Given a con-
crete program and a set of predicates (pi, . . ., pn) over the
concrete domain, the goal of the predicate abstraction pro-
cess is to construct an abstract Boolean program that forms
a sound over-approximation of the concrete program and is
as precise as possible relative to the given predicates.

As an example of the predicate abstraction procedure, con-
sider Figure 1. Figure 1a shows an example concrete proba-
bilistic program, while Figure 1b shows a non-deterministic
abstraction of this concrete program with a single predicate.
The assignment statement x=0 in Figure 1la is abstracted
to an assignment {x<3}=T. More interestingly, consider the
assignment statement x=x+1. If x<3 is false before the assign-
ment, then we can be sure that x<3 is false afterward. If x<3
is true before the assignment, then the abstraction does not

Guy Van den Broeck
UCLA
guyvdb@cs.ucla.edu

Todd Millstein
UCLA
todd@cs.ucla.edu

1 x = unif[-5, 5] // Inclusive uniform
2 if(x<@) { x =0 Y else { x=x+17}%

(a) A simple concrete probabilistic program over integer x.

1 {x<3} = *
2 AF({x<3} A *) { {x<3} =T }
s else { {x<3} = {x<3} A * }

(b) A predicate abstraction of the program in Figure 1a induced by
the predicate x<3, where * denotes a non-deterministic choice, and
{p} denotes the Boolean variable associated with the predicate p.

1 {x<3} = flip(61)
2 if({x<3} A flip(62)) { {x<3} =T }
3 else { {x<3} = {x<3} A flip(63) }

(c) A probabilistic predicate abstraction of the program in Figure 1a
induced by the predicate x<3, where f1ip(60) denotes a probabilistic
choice which is true with probability 6.

Figure 1. A concrete program, its non-deterministic abstrac-
tion, and its probabilistic abstraction.

have enough information to know the value of x<3 after the
assignment. Hence in the Boolean program {x<3} is assigned
to {x<3}A*, where * is a non-deterministic choice necessary
for the abstraction to remain an over-approximation.

3 Probabilistic Predicate Abstractions

Predicate abstractions may be generalized to generate prob-
abilistic program abstractions [5]. Figure 1c shows a prob-
abilistic version of the non-deterministic abstraction from
Figure 1b. In the probabilistic version, each use of the non-
deterministic choice operator * is replaced by a probabilistic
f1ip(@) operator, which is true with probability 6. For exam-
ple, in the case when x is less than 3, the “then” branch of
the if-statement is taken with probability 0;.

Notably, the probabilistic abstraction is itself a probabilis-
tic program: its semantics defines a probability distribution
over the states of the predicates. Every probabilistic predi-
cate abstraction is in fact a family of abstractions, induced by
the parameters of the program. By choosing the parameters
of the abstraction in a particular way, different relationships
between the probabilistic program abstraction and the con-
crete program may be established. For example, by choosing
01 = 8/11, we see that the predicate {x<3} is true with the
same probability as in the concrete program on Line 1.

4 Decomposition via Abstraction

Approaches to probabilistic program inference can roughly
be clustered into four categories: (1) performing inference
directly on the program using sampling including Markov
chain Monte-Carlo techniques (2) compiling the program to
a tractable representation and performing inference on that
new representation, (3) path-based inference using symbolic
analysis, and (4) variational or message-passing approxi-
mations. Despite the enormous progress in general proba-
bilistic program inference, all of the inference approaches
above place strong requirements on the types of programs for
which they are effective. However, we desire inference algo-
rithms that flexibly apply a variety of inference approaches.

We propose to utilize probabilistic program abstractions
to automatically decompose an inference task into several
simpler ones. The simplest form of decomposition is based
on independence; a small example is depicted in Figure 2.
The concrete probabilistic program in Figure 2a calls a func-
tion f that uses discrete random variables, encodes logical
dependencies, and has a complex control flow. It also calls
function g which models a large number of correlated con-
tinuous variables with a smooth yet multi-modal probability
landscape. Suppose that our goal is to compute Pr(x < 1).
We believe that there does not exist a single algorithm that
can perform this inference computation. However, inference
in the function f is readily performed using the compila-
tion approach or graphical model inference, and inference in
function g is perfectly suitable for Hamiltonian Monte-Carlo
sampling.

This observation is exploited by the probabilistic program
abstraction in Figure 2b. Each 0 parameter in the abstraction
corresponds to a distinct inference sub-problem. In the ex-
ample, we can respectively set the correct probabilities for
each 0; by performing inference on f and g separately, using
the algorithm that is most effective for each. The last line of
the abstraction then makes precise how the results of these
inference queries combine to compute Pr(x < 1) exactly.

5 Future Work

In order to utilize probabilistic program abstractions to per-
form inference, we must produce abstractions that decom-
pose a program into subprograms, each of which is amenable
to a particular form of inference. We plan to formalize this
decomposition process and identify criteria under which the
abstraction can answer inference queries about the concrete
program exactly, with no loss of precision. This work will
leverage the connection to probabilistic programs and the
existing body of work on their semantics.

6 Related Work

For context, we provide several strands of related prior work
and compare them with our proposal. Probabilistic abstract
interpretation [3] is a general framework for probabilistic

f() // discrete probabilistic program
= g() // continuous probabilistic program
y * |z]

o
X N <
|

(a) A hybrid concrete probabilistic program which combines the
results of two complex functions f and g. The type of y is a non-
negative integer, the type of z is nonnegative real. The symbol ||
is the floor function.

1 {y<1} = flip(6y)
2 {z<1} = flip(62)
5 {x<1} = {z<1} Vv {y<1}

(b) A probabilistic predicate abstraction of 2a with predicates {x<13},
{y<13}, {z<13}.

Figure 2. A hybrid concrete probabilistic program that is
difficult for inference, and a probabilistic predicate abstrac-
tion that allows for the decomposition of the inference query
asking Pr(x < 1).

verification of programs, and prior works that place upper
bounds on the probability of a particular path [7] or construct
Monte Carlo methods [8] can be viewed as instantiations of
this framework. However, this line of work does not explore
the connections between abstractions and probabilistic pro-
grams. Probabilistic program abstractions have been applied
to a limited subset of program inference tasks, in particu-
lar probabilistic reachability in probabilistic timed automata
[4, 6]. However, these tools do not extend to more general
Bayesian inference queries involving evidence, which is nec-
essary for supporting more sophisticated verification queries
such as conditional reachability.

References

[1] Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K. Rajamani.

2001. Automatic predicate abstraction of C programs. In Proc. of PLDL

203-213.

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A

Unified Lattice Model for Static Analysis of Programs by Construction

or Approximation of Fixpoints. In Proc. of POPL. 238-252. https://doi.

org/10.1145/512950.512973

Patrick Cousot and Michael Monerau. 2012. Probabilistic abstract

interpretation. In Proc. of ESOP. 169-193. https://doi.org/10.1007/

978-3-642-28869-2_9

Holger Hermanns, Bjorn Wachter, and Lijun Zhang. 2008. Probabilistic

CEGAR. Springer Berlin Heidelberg, Berlin, Heidelberg, 162-175. https:

//doi.org/10.1007/978-3-540-70545-1_16

[5] Steven Holtzen, Todd Millstein, and Guy Van den Broeck. 2017. Prob-
abilistic Program Abstractions. In Proc. of UAL

[6] Marta Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM
4.0: Verification of Probabilistic Real-time Systems. In Proceedings of the
23rd International Conference on Computer Aided Verification (CAV’11).
Springer-Verlag, Berlin, Heidelberg, 585-591.

[7] David Monniaux. 2000. Abstract Interpretation of Probabilistic Seman-
tics. In International Symposium on Static Analysis. 322-339.

[8] David Monniaux. 2001. An Abstract Monte-Carlo Method for the
Analysis of Probabilistic Programs. SIGPLAN Not. 36, 3 (Jan. 2001),
93-101. https://doi.org/10.1145/373243.360211

[2

—

[3

—

[4

flaav)

https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/978-3-642-28869-2_9
https://doi.org/10.1007/978-3-642-28869-2_9
https://doi.org/10.1007/978-3-540-70545-1_16
https://doi.org/10.1007/978-3-540-70545-1_16
https://doi.org/10.1145/373243.360211

	1 Introduction
	2 Predicate Abstractions
	3 Probabilistic Predicate Abstractions
	4 Decomposition via Abstraction
	5 Future Work
	6 Related Work
	References

