INTERACTIVE WRITING AND DEBUGGING
OF BAYESIAN PROBABILISTIC PROGRAMS

JAVIER BURRONI, ARJUN GUHA, DAVID JENSEN

College of Information and Computer Sciences
University of Massachusetts Amherst

1. INTRODUCTION

In systems for Bayesian probabilistic programming such as BLOG, a user defines the generative
model, presents the observations, and specifies the queries of interest. The program is then executed
to obtain the desired results: posterior distributions over one or more queries. Obtaining results
for a different query requires re-running the entire program. However, neither the data nor the
generative model are changed by the new query, so performing inference in this case is inefficient.
We show how to eliminate this inefficiency while simultaneously facilitating a more fluid exploration
of the probabilistic model specified by the program. Our system is an implementation of BLOG
[Milch et al., 2005] that allows users to interact with the full posterior distribution. This system is
also the first interactive debugger for probabilistic programs.

One internal result of the execution of a BLOG program is the creation of a posterior distribution
over possible worlds. Each possible world is a model structure of first-order logic that can be
constructed from the given generative process [Milch et al. 2005]. We propose a system that
exposes the posterior distribution of worlds to the user, providing the ability to query any element
of the full posterior. When the worlds are restricted to ancestors of the observations, they are
complete worlds, but removing this restriction may create partial instantiations (some variables
may not be generated). Once the user takes control of the process, they may create and evaluate
any number of queries. If the user provides a query that includes objects not yet instantiated, the
system can instantiate that part of the world while paying only the cost of forward inference.

For the case when a joint probability distribution that can be represented as a Bayesian network,
both backward inference and forward inference may be necessary to estimate a posterior distribu-
tion. Backward inference refers to the task of inferring the distribution of a set of variables given
all their descendents, which is required to infer the value of an observation’s ancestors. In contrast,
forward inference refers to computing the posterior distribution of a set of variables given obser-
vations of all their ancestorsﬂ This difference is relevant because backward inference is usually
the more costly inference mechanismﬂ Our proposed system highlights this as it runs backward
inference once and required forward inferences are executed in a lazily.

Date: December 19, 2017.

11t is important to notice that Bayesian learning happens only during backward inference. Forward inference is
a way of forward simulation once the value of the variable’s ancestors are determined.

2To use this idea in the context of BLOG, the idea must be extended to Contingent Bayesian Networks (CBN)
with self supporting instantiations. See Theorem 1 of [Milch and Russell; 2012 for more details.

1

2 INTERACTIVE WRITING AND DEBUGGING OF BAYESIAN PROBABILISTIC PROGRAMS

2. INSPECT AND QUERY.

We introduce a new operator—inspect—and a modified operator—query—that allows BLOG
users to explore the posterior distribution of worlds. Given a world w, the inspect (expr) statement
evaluates the BLOG expression expr in w.Therefore, a user can use inspect to expose the value
of any constant, function, or relation defined in w. On the other hand, the usual semantics of
query (expr) can be thought of as the application of inspect (expr) over a sample of the posterior
distribution of worlds.

A step-by-step debugger can be built on top of inspect. Using the recursive definition of
expressions, recursive application of inspect will act as step-by-step debugging. In that way, any
expression can be traced to primitive random choices earlier in execution.

As the generative model is itself made of BLOG expressions, it can also be inspected. After
randomly selecting a world w, debugging the generative model is equivalent to recursively inspecting
the composition of expressions that end in the observe statements. This will reveal the choices made
by nature in w to produce these observations. Additionally, the researcher may insert breakpoints to
debug starting at a predefined location in the code. In that way, locally defined symbols—function
arguments—can be inspected to gain insight regarding the generation of a specific output.

Unlike debugging non-probabilistic programs, users who debug probabilistic programs face a
distribution over traces (possible worlds). The most obvious approach would be to randomly choose
one world and perform step-by-step debugging. However, in addition to moving forward or backward
in a specific trace, our approach supports lateral movements: moves to a randomly chosen w,, such
that w, |= p for a suitable predicate p. For example, if a user wants to understand why a given
branch of an if-statement is taken, they can move to one or more worlds where the condition holds
and explore each of those worlds using both inspect and step.

3. THE IMPACT OF OBSERVATIONS

With the ability to interactively execute any query, the user also gains
the ability to inspect the effect of information—encoded through the use of
obs statements—on any possible query. Given a model with an observation
set O, of size n, the system will take subsets Oy C Oy C --- C O,,, where k
indicates the size of the subset and compute a posterior distribution over each
subset. For instance, the posterior distribution over Oy will be equal to the
prior distribution. That will show the sensitivity of posterior distributions of
any query to observations. In the impact of observations can be
seen in the “grades” model of Heckerman et al. [2004]. As more data is used,
the probability for a student to get A or B decreases.

FIGURE 1. For the
grades example from
Heckerman et al.
[2004], posterior dis-

4. FUTURE WORK. tribution of the query

Although our implementation is for the BLOG PPL, it could be applied to (GradeQbtained(John,
. . . . CS106) == A) |
other PPLs using information that they currently compute. Take for instance .
. . O . ; (GradeObtained (John,
Anglican [Wood et al.,[2014]. For its black-box variational Bayes algorithm, it CS106) == B) for

stores information regarding random choices using addresses that uniquely

the prior (zero ob-
identify checkpoints: sample and observe statements. With that information,

servations) and when

the idea presented on this paper can be implemented. A more recent PPL,
ProbTorch [Siddharth et al. 2017] exposes a Trace structure that should
allow the efficient implementation of this debugger.

using at most three
observe statements.

INTERACTIVE WRITING AND DEBUGGING OF BAYESIAN PROBABILISTIC PROGRAMS 3

REFERENCES

David Heckerman, Christopher Meek, and Daphne Koller. Probabilistic mod-
els for relational data. Technical report, Technical Report MSR-TR-2004-30, Microsoft Research,
2004.

Brian Milch and Stuart Russell. General-purpose MCMC inference over re-
lational structures. arXiv preprint arXiv:1206.6849, 2012.

Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong,
and Andrey Kolobov. BLOG: Probabilistic models with unknown objects.
2005.

N. Siddharth, Brooks Paige, Jan-Willem van de Meent, Alban Desmaison,
Noah D. Goodman, Pushmeet Kohli, Frank Wood, and Philip Torr.
Learning disentangled representations with semi-supervised deep gen-
erative models. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems 30, pages 5927-5937. Curran Associates,
Inc., 2017.

Frank Wood, Jan Willem Meent, and Vikash Mansinghka. A new approach
to probabilistic programming inference. In Artificial Intelligence and Sta-
tistics, pages 1024-1032, 2014.

	1. Introduction
	2. Inspect and query.
	3. The impact of observations
	4. Future Work.
	References

